

AN-1849 An Audio Amplifier Power Supply Design

ABSTRACT

This application report provides design information for a power supply for use with our newest offering of high-performance, ultra high-fidelity audio amplifier input stage ICs.

Contents	;
----------	---

1	Introduction	2
2	Overview	2
3	Schematic and Design	
•	3.1 Power Supply	
4	Bill Of Materials	
5	Additional Circuit	6
	5.1 120V/240V Selection Option	6
	5.2 Inrush Current Control	
	5.3 Power Up/Down Mute Control	8
6	Summary	11
7	Board Layer Views	12
8	Revision History	

List of Figures

1	Complete Power Supply Circuit	4
2	120V Transformer Connections, Primaries in Parallel	6
3	120V Transformer Connections, Primaries in Series	6
4	Inrush Current Control	7
5	Supply Ramp at Power On	7
6	Mute Control	8
7	Mute at Power On	9
8	Mute at Power Off	9
9	Constant Brightness LED Circuit	10
10	Constant Brightness LED and Mute Control Circuit	10
11	PCB Composite View From Top	12
12	PCB Top Silkscreen View	13
13	PCB Bottom Silkscreen View	14
14	PCB Top Layer View	15
15	PCB Bottom Layer View	16

List of Tables

1	Bill Of Materials	4
---	-------------------	---

All trademarks are the property of their respective owners.

1 Introduction

Analog audio circuit power supplies can have an audible effect in listening test and quantifiable effect in bench measurement results. Power supply designs that operate from the power mains are of three common types: Switch mode (SMPS), regulated, and unregulated power supplies.

Switch mode power supplies have become very popular, common, inexpensive, and readily available. SMPS are used extensively in computer hardware. They are well suited for such use providing good regulation with high efficiency in a small physical size. A drawback to SMPS is the switching nature of the design which creates EMI and RFI plus electrical noise on the supply rails. Small signal analog circuits are more susceptible to noise in the form of EMI or electrical noise on the supply lines. Certain classes of amplifiers, namely Class G and Class H, may be more easily realized with SMPS that are fast responding for full audio bandwidth signals. Using SMPS for audio circuits presents additional design challenges than when using a SMPS for non-audio circuits.

A regulated supply can be a simple linear regulator IC with the rectified voltage from the transformer as input and a handful of external components or any number of more complicated and often higher performance designs. There are the tradeoffs of complexity, cost, space, thermal design, reliability and protection with any regulated design. It is common for regulated supplies to be used for the analog small signal portions and other sensitive circuits for best performance. For an audio power amplifier, regulated supplies will need high bandwidth for good audio performance. The complexity and cost for such a power supply design may not be acceptable. Most linear regulator ICs do not have high bandwidth and are slow compared to audio signals that can result in reduced audio performance.

For simplicity, good performance, and reasonable cost, an unregulated supply is the most common for an audio power amplifier. An unregulated supply uses a transformer, a bridge rectifier, and various rail capacitors. A draw back to the unregulated supply is the voltage fluctuations with load and power mains fluctuations. A design should allow for a minimum 10% high line condition on the power mains. Unregulated supplies may have only a fuse in the power mains input to protect against excessive current unlike more sophisticated regulated designs. Additionally, the power supply voltage rails may have inline fuses to add some additional protection.

The circuit and solution presented in this application note has not been tested to any industry standards. It is the responsibility of the reader to perform standard industry testing to assure safety when using the solution in part or in whole in any form. Texas Instruments does not provide any guarantees, written or implied, about the safety of the solution.

2 Overview

2

This application note will cover the design of a \pm 72V unregulated power supply designed specifically for the LME49810, LME49811 and LME49830 high-fidelity audio amplifier modules. The output power of the modules are approximately 220W to 250W into 8 Ω and 350W to 400W into 4 Ω . Complete documentation for the amplifier modules can be found in the *LME49830TB Ultra-High Fidelity High Power Amplifier Reference Design* (SNAA058).

Although the power supply design is specific to the amplifier modules the concepts and circuit design may be used for any power supply purpose.

The power supply is an unregulated design with an option to allow connection to either 120V or 240V mains. The design uses toroidal transformers, a fully integrated bridge, and various rail capacitors for ripple voltage reduction, noise suppression, and to act as high current reservoirs. Additional circuitry to control inrush current on power up and power up/down Mute control are also included. A complete schematic, PCB views, and Bill of Materials are provided for the power supply design.

3 Schematic and Design

3.1 Power Supply

Figure 1 shows the complete schematic of the power supply design. The heart of the design is the basic power supply consisting of the transformers, the bridge, and various capacitors. Many of the capacitors used may not be commercially necessary or may have a minimal effect on performance. Because the design is not a commercial design where tight cost constraints must be taken into account, additional capacitors are freely used. For a commercial design, bench and listening test or some other test criteria is recommended to determine the exact number, size, and type of external components required. A short explanation of the purpose of each capacitors are doubled up on the PCB for flexibility or to achieve the desired total capacitance.

- C₁, C₂, C₄ are to protect against turn on/off spikes caused when the power switch changes positions.
 C₃ is not used and is redundant.
- C_{S1}, C_{S2} are low value, ceramic capacitors to filter higher frequency noise right at the DC output of the diode bridge.
- C_{S3}, C_{S4} are the large reservoir capacitors to supply large current demands and stabilize the supply rails to minimize low frequency fluctuations. These are very large value electrolytic capacitors. Two capacitors are used to achieve the desired 40,000µF capacitance per rail.
- C_{S5}, C_{S6} are high quality film capacitors to filter higher frequency noise. Two footprints are used on the PCB for flexibility.
- C_{S7}, C_{S8} act in conjunction with R_{S1} and R_{S2} to decouple the large electrolytic capacitors and reduce impedance.
- C_{S9}, C_{S10} are low value, ceramic capacitors to filter higher frequency noise from the transformer secondary AC lines at the diode bridge.
- C_{S11} C_{S14} are in parallel with the bridge diodes to reduce high frequency noise and ringing of the diode. An additional RC snubber in parallel with each diode of the rectifier will further reduce noise and ringing.

The values for the different capacitors were not chosen based on extensive bench work or research. The values were chosen based on general guidelines and commonly used values. Additional performance may be obtained through refinement of the capacitor values. The equations and methods to determine optimal values are beyond the scope of this application note.

Additionally, the supply rails have bleeder resistors, R_{BL1} , R_{BL2} , to drain the large reservoir capacitors (C_{S3} , C_{S4}). Two footprints per rail were placed on the PCB to allow for lower power resistors to be used and a wide range of bleeder current. More sophistication can be added by including an additional DPDT relay and controls to only connect the bleeder resistors below a set voltage and remain unconnected during normal operation.

The fully integrated bridge has a peel and stick heat sink attached. See Table 1 for robustness in use and higher ambient temperature conditions.

Bill Of Materials

www.ti.com

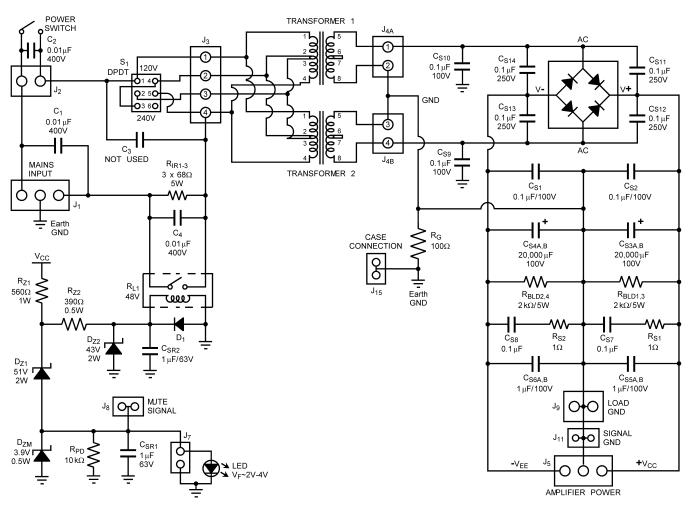


Figure 1. Complete Power Supply Circuit

4 Bill Of Materials

Table 1. E	3ill Of	Materials
------------	---------	-----------

Reference	Value	Tolerance	Description	Manufacturer	Part Number
C1, C2, C4	0.01µF	10%	400V, metalized polyester film, 7.5mm lead spacing	Panasonic	ECQ-E4103KF
C3			Not Used		
CS1, CS2, CS7, CS8, CS9, CS10,	0.1µF	10%	100V ceramic, X7R type, 200mil lead spacing	AVX Corporation	SR211C104KAR
CS11, CS12, CS13, CS14	0.1µF	10%	250V, metalized polyester film, 7.5mm lead spacing	Panasonic	ECQ-E2104KF
CS3A, CS3B, CS4A, CS4B	20,000µF	20%	100V electrolytic can	CDE Cornell Dubilier	DCMC203U100BC2 B
CS5A, CS5B, CS6A, CS6B	1µF	10%	100V, metalized polyester film, 10mm lead spacing	Panasonic	ECQ-E1105KF

Table 1.	Bill C	Of Materials	(continued)

Reference	Value	Tolerance	Description	Manufacturer	Part Number
CSR1, CSR2	1µF	20%	63V electrolytic radial, 2mm lead spacing	Panasonic	EEU-EB1J1R0S
D1	1A		400V diode, DO-41	Vishay Semiconductor	1N4004-E3/54
DZ1	51V	5%	2W Zener diode, DO-41	Microsemi Corporation	2EZ51D5DO41
DZ2	43V	5%	2W Zener diode, DO-41	Microsemi Corporation	2EZ43D5DO41
DZM	3.9V	5%	500mW Zener diode, DO-35	Diodes Inc.	1N5228B-T
RBLD1, RBLD2, RBLD3, RBLD4	2kΩ	5%	5W metal oxide	International Yageo Corporation	SQP500JB-2K0
RFAN	1.2kΩ	5%	5W metal oxide	International Yageo Corporation	SQP500JB-1K2
RIR1, RIR2, RIR3	68Ω	1%	5W wirewound silicone	Huntington Electric, Inc.	ALSR-5-68-1%
RS1, RS2	1Ω	5%	1/4 Watt carbon film	Panasonic	ERD-S2TJ1R0V
RG	100Ω	1%	1/4 Watt metal film	International Yageo Corporation	MFR-25FBF-100R
RZ1	560Ω	5%	1 Watt metal oxide film	Panasonic	ERG-1SJ561
RZ2	390Ω	5%	1/2 Watt carbon film	Panasonic	ERD-S1TJ391V
RPD	10kΩ	5%	1/4 Watt carbon film	Panasonic	ERD-S2TJ103V
RL1	16A		48V, 400mW SPST, N.O., relay	Panasonic Electric Works	ALE15B48
U1	35A		700V bridge rectifier	Fairchild Semiconductor	GBPC3510W
S1	6A		DPDT PCB mount, mini slide switch	C&K Components	1201M2S1CQE2
J1, J5			3 pin 156mil header, right angle, tin plating	Molex/Waldom Electronics Corp.	26-60-5030
J2, J9, J4A, J4B			2 pin 156mil header, right angle, tin plating	Molex/Waldom Electronics Corp.	26-60-5020
J3A, J3B			4 pin 156mil header, right angle, tin plating	Molex/Waldom Electronics Corp.	26-60-5040
J7, J8, J11, J12, J13, J14, J15			2 pin 100mil header, right angle, tin plating	Molex/Waldom Electronics Corp.	22-05-3021
Transformer1, Transformer2	24V, 300VA		Dual primary, dual secondary, torrid transformer	Plitron Manufacturing Inc.	77060201
	$\theta_{CA} = 16.5^{\circ}C/W$		Peel & stick heat sink for bridge, 1.21" square, 0.55" tall	CTS Electronic Components, Inc	BDN12-5CB/A01
RZ3, RZ4, DZ3, DZ4, CSF1, CSF2, CSF3			Option unused circuits		

5 Additional Circuit

5.1 120V/240V Selection Option

For multi-country operation a switch is included to select between 120V or 240V input at the primary side of the transformers. The transformers are dual primary with the switch allowing the option to put the primaries into series or parallel. The primary side of each transformer is connected in parallel for 120V operation with series connection used for 240V operation. The schematics, Figure 2 and Figure 3, show the different connections with the switch set for either 120V or 240V input from the power lines.

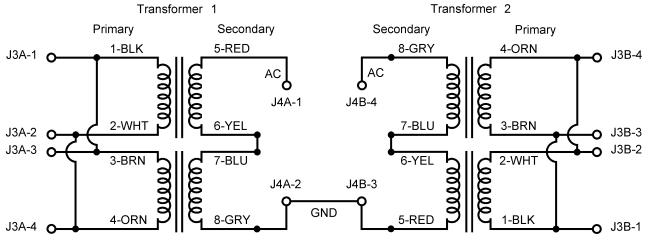


Figure 2. 120V Transformer Connections, Primaries in Parallel

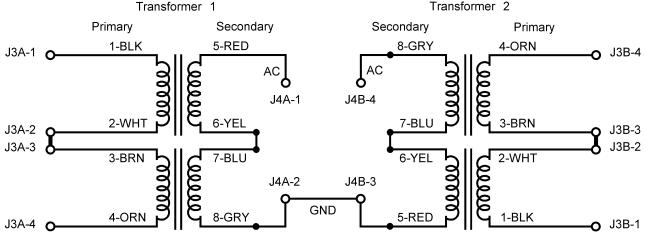
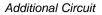



Figure 3. 120V Transformer Connections, Primaries in Series

5.2 Inrush Current Control

A simple inrush circuit is used to limit the high current that occurs at power up. The portion of the schematic that controls inrush current is shown in Figure 4.

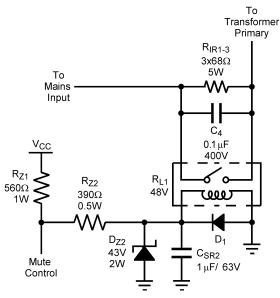


Figure 4. Inrush Current Control

The inrush circuit consist of three $68\Omega/5W$ resistors ($R_{IR1} - R_{IR3}$, labeled just R_{IR} in Figure 1 and Figure 4) in parallel, a relay and the relay controls. The R_{IR} resistors limit transformer primary current flow and the resulting secondary current flow when the transformer is powered for a softer turn on. Once the V_{CC} rail voltage exceeds 33V the relay is activated shorting out the resistors. The relay is deactivated when the V_{CC} voltage falls below 10V resetting the circuit. The circuit is very simple and does not limit inrush current if the mains power is switched on before the V_{CC} rail drops below 10V. The relay control consists of the R_{Z1} and R_{Z2} resistors to limit current through the voltage clamping D_{Z2} Zener diode. D_{Z2} limits the relay voltage below the maximum 48V rating. The D_1 diode is for the relay coil EMF and C_{SR2} is to remove ripple and stabilize the relay voltage. The oscilloscope view in Figure 5 shows how the positive rail charges up with the increase in charge rate once the relay is closed shorting out the inrush current limiting resistors. The R_{IR} resistors will get warm but they are only conducting for 500ms each time the amplifier is powered on keeping the power dissipation well within the 5W rating.

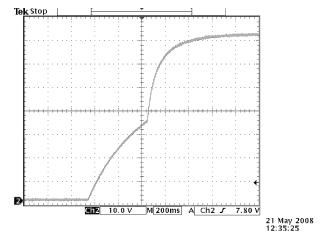


Figure 5. Supply Ramp at Power On

5.3 Power Up/Down Mute Control

The Mute function of the audio amplifier input stage IC is used for a completely quiet turn on and turn off. The amplifier is held in Mute mode until the voltage supplies are nearly stable and also goes into Mute mode once the supplies have collapsed below a determined voltage. With 40,000µF of supply reservoir capacitance per rail the amplifier can continue operation for some time after the mains power has been removed. The mute control circuit removes the drive signal for a quicker turn off well before the supplies have collapsed down below the minimal operating voltages. The amplifier will turn off quietly and smoothly without any undesired noise. The Mute control circuit portion is shown in Figure 6.

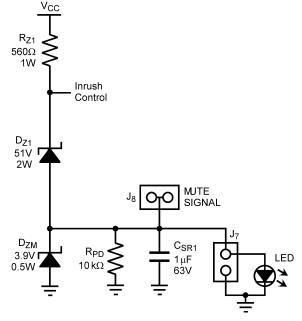
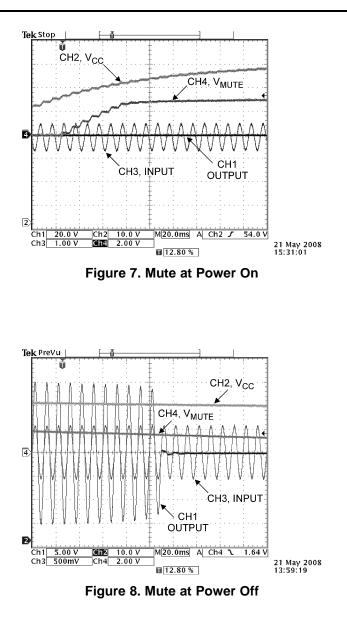



Figure 6. Mute Control

The voltage threshold is set by the value of the D_{z_1} Zener diode, the current limiting R_{z_1} resistor and the forward voltage on the LED. The circuit works by simply requiring a certain positive supply rail voltage before the LED turns on and the amplifier switches out of Mute mode. The D_{z_1} Zener diode will begin to conduct once the positive supply rail exceeds it's rated voltage. At this point the LED will begin to develop voltage across it. The LED's forward voltage (typically $2V \sim 4V$) is used as the amplifier's Mute voltage. Setting the Mute resistor on the amplifier PCB module correctly allows the amplifier to go out of Mute mode once the LED's forward voltage is high enough to supply the needed Mute current. The LED is also used as an indicator, lighting when the amplifier is in Play mode. The values shown set the Mute voltage threshold to 57V on power up and 58V on power down. Because of component tolerances the threshold voltages will vary. At power down, the forward voltage of the LED will collapse quickly putting the amplifier into Mute mode well before the supplies are discharged for a quiet and relatively quick power off. Figure 7 and Figure 8 show the Mute signal reaches the Mute threshold (~1.80V for the amplifier PCB) and when the amplifier enters PLAY mode as a result of the mute delay capacitor on the amplifier PCB.

The R_{ZM} Zener diode is for protection in the event of LED failure locking the Mute voltage so it will not exceed 4V. The amplifier PCB module's Mute resistor is sized for a maximum of 4V safely limiting Mute current. R_{PD} is needed so D_{Z1} will conduct and C_{SR1} is for a steady LED/Mute voltage.

A short coming of the simple Mute control circuit is the LED's brightness will vary under heavy amplifier load with the circuit values shown in Figure 6. Either the threshold of the Mute circuit can be lowered by changing the value of D_{Z1} for more consistent brightness in operation or a constant current circuit may be used. Figure 9 shows a basic constant current (LED brightness) circuit with similar threshold voltages as the Mute control circuit.

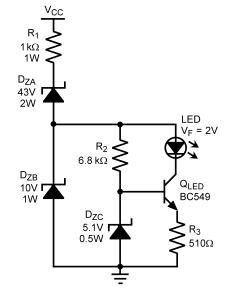


Figure 9. Constant Brightness LED Circuit

The LED will first begin to light when the positive supply rail voltage exceeds 45V. Once the positive rail reaches 60V the LED will have 6.5mA of current and only increase to 6.7mA at 80V with indiscernible change in brightness. Zener diode D_{ZA} sets the minimum threshold for first light of the LED. Combining the values of D_{ZA} , D_{ZB} , along with voltage drop across R_1 sets the voltage when the LED current reaches a constant value and constant brightness. R_3 and D_{ZC} set the LED current and R_2 is used to bias Q_{LED} and limit current through D_{ZC} . By using a 10V Zener diode (D_{ZB}) the power dissipation in Q_{LED} is kept very low so that a small transistor can be used without power dissipation concerns. The trade-off is that the D_{ZA} Zener diode is required to dissipation about 1W when the supply reaches 80V. Figure 9 does not give both constant LED current and the Mute signal control as Figure 6, although the Mute control could be taken at the emitter of Q_{LED} . An alternate circuit to combine both Figure 6 and Figure 9 is shown in Figure 10.

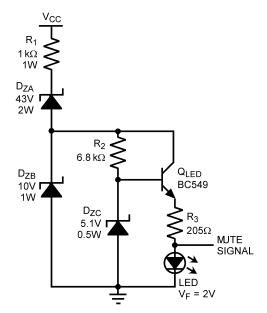


Figure 10. Constant Brightness LED and Mute Control Circuit

The circuit in Figure 10 will have the same threshold voltages as in Figure 9 and similar Mute control thresholds as in Figure 6 but can also be used to control the Mute signal to the audio amplifier module. For a reduced supply voltage window from LED first light to constant brightness, D_{ZA} should be increased while D_{ZB} is reduced. This will increase the LED first light threshold while reducing the additional voltage needed to reach the constant brightness threshold. The value of D_{ZC} may also be adjusted to achieve the designed circuit response.

6 Summary

The unregulated power supply presented will give very good performance while powering an audio amplifier. While circuit modifications and additions can improve performance the solution presented has a relatively low part count and simplicity is maintained with all circuits. The power supply will provide a \pm 70V to \pm 73V supply under quiescent conditions with full load voltage dropping to \pm 59V to \pm 62V.

7 Board Layer Views

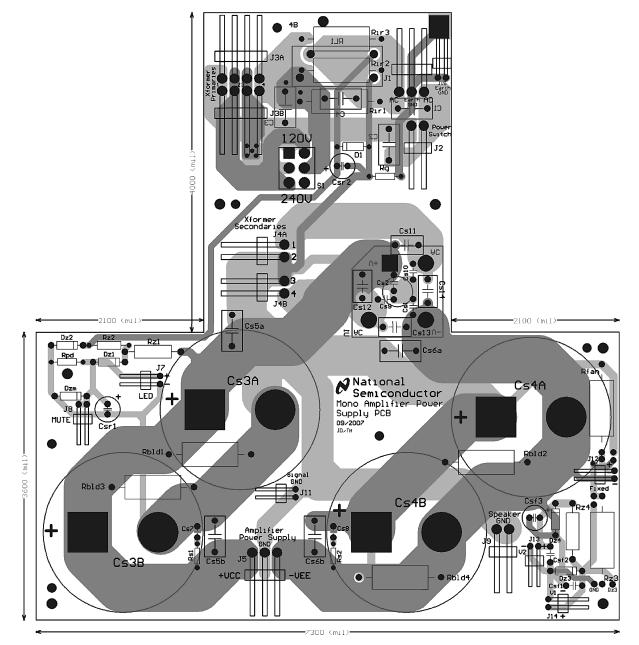


Figure 11. PCB Composite View From Top

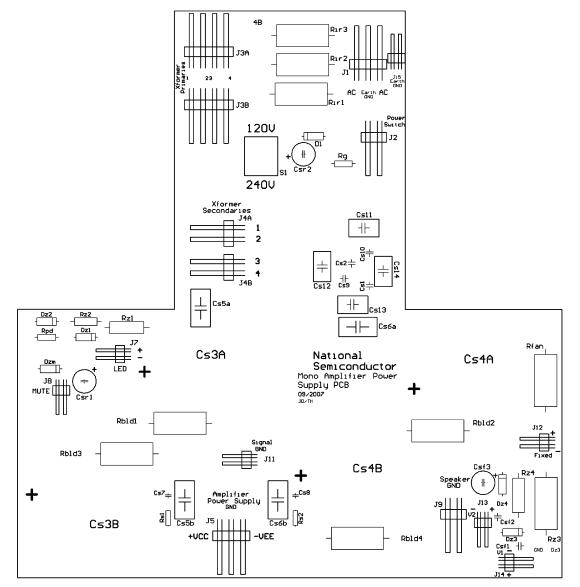


Figure 12. PCB Top Silkscreen View

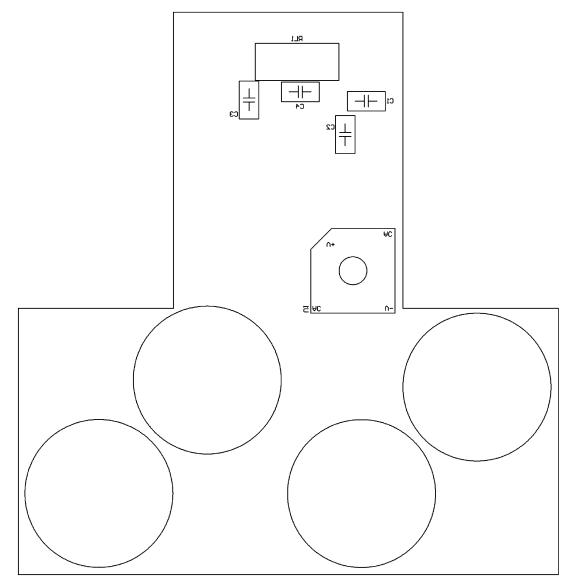


Figure 13. PCB Bottom Silkscreen View

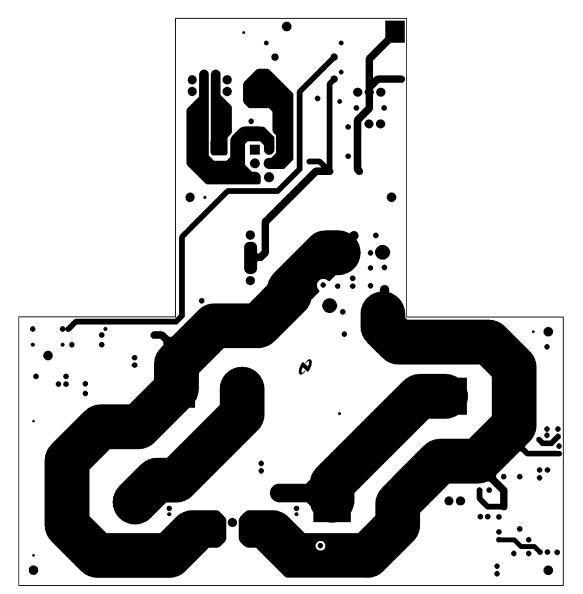


Figure 14. PCB Top Layer View

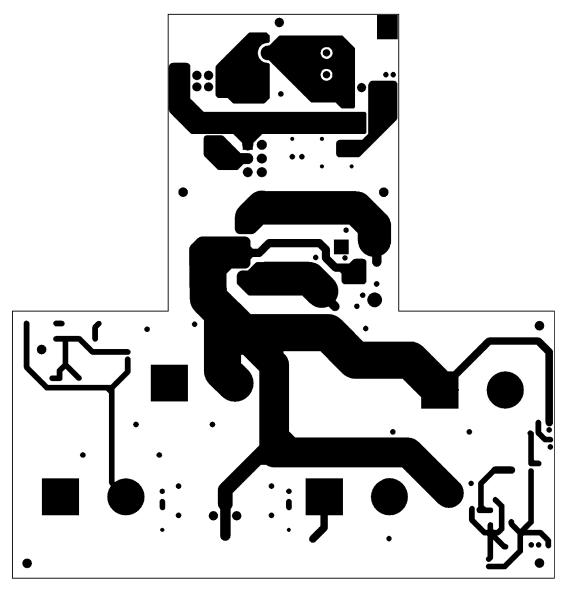


Figure 15. PCB Bottom Layer View

8 Revision History

Rev	Date	Description
1.0	06/03/08	Initial release.
1.01	03/15/10	Deleted all references to AN-1625.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated